DESVIACION STANDARD
La desviación estándar (o desviación típica) es una medida de dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva. Es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.
Para abordar las cuestiones que comentábamos en el párrafo anterior, nos valemos de herramientas como la varianza y la desviación estándar. Ambas medidas están estrechamente relacionadas ya que definimos una a partir de la otra.
Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que representan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad a la hora de describirlos e interpretarlos para la toma de decisiones.
Para abordar las cuestiones que comentábamos en el párrafo anterior, nos valemos de herramientas como la varianza y la desviación estándar. Ambas medidas están estrechamente relacionadas ya que definimos una a partir de la otra.
Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que representan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad a la hora de describirlos e interpretarlos para la toma de decisiones.
La desviación estándar es una medida del grado de dispersión de los datos del valor promedio. Dicho de otra manera, la desviación estándar es simplemente el "promedio" o variación esperada con respecto de la media aritmética.
Una desviación estándar grande indica que los puntos están lejos de la media, y una desviación pequeña indica que los datos están agrupados cerca a la media.
Una desviación estándar grande indica que los puntos están lejos de la media, y una desviación pequeña indica que los datos están agrupados cerca a la media.
PERCENTIL:
Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje de los miembros de la población.
CÓMO DECIDIR EN EL CASO DE MÚLTIPLES SOLUCIONES PARA UN PERCENTIL:
Como se viO anteriormente, existen situaciones en el cálculo de un percentil muestral en las que todo un intervalo de números reales cumple con las condiciones de ser el percentil buscado. Esta respuesta no es útil porque habitualmente se necesita un único valor como resultado.
Para obtener este único resultado hay diversas soluciones. Aquí se usará aquella que calcula un punto de intervalo entregado por el cálculo anterior usando el mismo porcentaje que define al percentil.
IMPORTANTE: No hay sólo un criterio para calcular percentiles muestrales. De hecho, importantes programas de computación estadística entregan resultados diferentes debido a que usan criterios similares, pero no iguales. No debe causar sorpresa, entonces, encontrar estas diferencias originadas por la falta de un procedimiento universalmente aceptado.
CUARTIL:
Uno de los tres puntos que dividen un conjunto de datos numéricamente ordenados en cuatro partes iguales. A estos tres puntos se les llama primer cuartil (también llamado el cuartil inferior), segundo cuartil (el cuartil medio; es la mediana) y el tercer cuartil (cuartil superior), respectivamente. Se pueden utilizar para darnos una idea de la dispersión de los datos.
Devuelve el cuartil de un conjunto de datos. Los cuartiles se usan con frecuencia en los datos de ventas y encuestas para dividir las poblaciones en grupos. Por ejemplo, puede utilizar la función CUARTIL para determinar el 25 por ciento de ingresos más altos en una población.